Optimal Rates of Convergence for Sparse Covariance Matrix Estimation
نویسندگان
چکیده
This paper considers estimation of sparse covariance matrices and establishes the optimal rate of convergence under a range of matrix operator norm and Bregman divergence losses. A major focus is on the derivation of a rate sharp minimax lower bound. The problem exhibits new features that are significantly different from those that occur in the conventional nonparametric function estimation problems. Standard techniques fail to yield good results and new tools are thus needed. We first develop a lower bound technique that is particularly well suited for treating “two-directional” problems such as estimating sparse covariance matrices. The result can be viewed as a generalization of Le Cam’s method in one direction and Assouad’s Lemma in another. This lower bound technique is of independent interest and can be used for other matrix estimation problems. We then establish a rate sharp minimax lower bound for estimating sparse covariance matrices under the spectral norm by applying the general lower bound technique. A thresholding estimator is shown to attain the optimal rate of convergence under the spectral norm. The results are then extended to the general matrix lw operator norms for 1 ¤ w ¤ 8. In addition, we give a unified result on the minimax rate of convergence for sparse covariance matrix estimation under a class of Bregman divergence losses.
منابع مشابه
Optimal Rates of Convergence for Sparse Covariance Matrix Estimation By
This paper considers estimation of sparse covariance matrices and establishes the optimal rate of convergence under a range of matrix operator norm and Bregman divergence losses. A major focus is on the derivation of a rate sharp minimax lower bound. The problem exhibits new features that are significantly different from those that occur in the conventional nonparametric function estimation pro...
متن کاملN ov 2 00 7 Sparsistency and Rates of Convergence in Large Covariance Matrices Estimation ∗
This paper studies the sparsistency, rates of convergence, and asymptotic normality for estimating sparse covariance matrices based on penalized likelihood with non-concave penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur ...
متن کاملSparsistency and Rates of Convergence in Large Covariance Matrix Estimation.
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the cova...
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملEstimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation
This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...
متن کامل